Signal and system

created : Mon, 01 Jan 0001 00:00:00 +0000
modified : Mon, 01 Jan 0001 00:00:00 +0000

layout : wiki title : 신호 및 시스템 summary : 2022-1학기 신호 및 시스템 공부 date : 2022-03-15 14:58:52 +0900 lastmod : 2022-06-05 19:08:16 +0900 tags : [lecture] draft : false parent : lectures

Week 1

1-1 자연상수와 오일러 등식

기본 자료

  1. 자연 상수(Euler’s number) e의 정의 $$ e = lim_{n-> \infty} ( 1 + \frac{1}{x})^n = 2.71828…$$
  1. 정현파 (sinusoidal wave)

복소수 표현


오일러 등식

유도과정

5. 복소수 사칙 연산


1. 미분 방정식 -> (목적 함수의 최적화, 대상 함수의 추정)

2. 미분방정식의 해

미분방정식 풀이


고유값과 고유벡터 (eigenvalues and eigenvectors)


Ch.1. Signal and System

1.1. Continuous-time(C-T) and discrete-time(D-T) signals

1.1.1. Exmaples & mathematical representation

1.1.2 Signal energy & power (신호의 정량적 표현/비교에 평균값, 최대값 x)


- Signal is a pattern of variation of some form

How is a Signal Represented?

Continuous & Discrete-Time Signals

참고: 전기회로

1.2. Transformations of the Independent Variable

1.2.1. Examples of transformations of the indepdnent variable

1.2.2. Periodic signals

1.2.3. Even and odd signals

1.3. Exponential Signal & Sinusoidal Signals

1.3.1. C-T- complex exponential & sinusoidal signals

1.3.3. Periodicity properties of D-T complex exponentials

1.4. Unit impluse and unit step function

1.4.1. D-T unit impulse & unit setp sequences

1.4.2. C-T unit setp & unit impluse functions

1.5. C-T and D-T system

1.5.1. Simple examples of systems

1.5.2. Interconnections of systems

1.6

1.6.1 Systems with & without memory

1.6.2. Invertiblity & inverse systems

1.6.3. Casuality

1.6.4. Stability

1.6.5. Time invariance

1.6.6. Linearity

Ch.2. Linear Invariant System

2.0 Introduction

2.1. D-T LTI systems : Convlution sum

2.1.1. Representation of D-T signals in terms of impulses

2.1.2. D-T unit impulse response & convolution-sum representation of LTI systems

2.2.2 C-T unit impulse reponse & convolution integral representation of LTI systems

2.3 Properties of linear time-invariant systems

2.3.1. Commutative property (컨벌루션 연산의 기본적 성질)

2.3.2. Distributive property

2.3.3. Associative property

2.3.4. LTI systems with & without memory

2.3.5. Invertibility of LTI systems

2.3.6. Causality of LTI systems

2.3.7 Stability for LTI systems

2.4. Causal LTI systems described by differential & difference equations

2.4.1. Linear constant-coefficient differential equations

2.4.2. Lienar constant-coefficient difference equations

2.5. Singularity functions

2.5.1. Unit impulse as idealized short pulse

2.5.2. Defining the unit impulse through convolution

3.

3.0 Introduction

3.1. Histroical perspective

3.2. Response of LTI systems to complex exponentials

3.3. Fourier series representation of C-T periodic signals